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In recent years a large number of investigations devoted to considera- 

tion of the wave motions of a fluid in basins which have a plane bottom 

inclined to the horizon have been published. These investigations are 

described in sufficient detail in Stoker’s book [ll and in Wehausen’s 

long review article [21. 

The problem of waves excited on the surface of a fluid by a period- 

ically acting source located at a given depth above a uniformly inclined 

bottom is considered below. The investigation is carried out for Plane- 

parallel potential motions, using methods presented in [l, 21. 

1. Let us assume that the angle a of the inclination of the bottom 
to the horizon is an integral fraction of 90°, i.e. a = v/2n. 

We shall call the characteristic stream function ~(2, t) 

w (2, 6 = ‘p (5, y; 4 + i$ (x7 Y; 0 

If the axis On is drawn along the average water level, the axis 9 

directed vertically upwards and the point 0 taken at the intersection 

of the free water level with the bottom of the basin, the following 

boundary condition will then obtain for all positive values of x: 

Let us consider 

( 
a20 - 
at3 t s” &a = 0 

periodic motions with frequency o; we shall assume 
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w (2, t) = f (2) cos at, f (4 = cp (XT !A + i$ (x7 y) 
cp (5, y; 4 = cp (5, y) M’s at, q (5, y; 0 = 11, (5, y) cos ut 

The new function 9(x, y) will satisfy the condition 

(2 - VT),,_, = 0 (v = $) 

Let us rewrite this condition in the following form: 

Im (dfldz + ivf) = 0 for Z=Z (1.Q 

In addition, the function q(n, y) must also satisfy the following 

boundary condi tion : 

acp av -ggsina+-cosu= 0 for y=--2tana 
aY 

This last condition can be rewritten as 

Im (eia df / dz) = 0 for q z = - a (1.2) 

Besides these conditions, we shall require the function f(z) to be 

holomorphic about the point z = 0. 

Let US assume that the waves on the surface of the fluid arise from 

a source at z = pe-Cli = cO having a periodic output Q = q cos at. By 
virtue of this assumption the function f(z) will have the following 

form in the neighborhood of the point c,,: 

f(z) = & In (2 - co) + . . . (1.3) 

Thus, the analytic function f(z) must satisfy conditions (1. i) and 

(1.2), must be holomorphic at the point z = 0 and must have a loga- 

rithmic singularity at the point co. To determine the function f(z) in 

accordance with these conditions let us consider the following function 

of a complex variable: 

G (z) = 2 a,, [fck+“(Z) + iVf’“‘(z)l 

k=O 

The coefficients ak here have the following values: 

a, = 1, ak = -$ Q)t a M), 2a . . . u)t ka (k=1,2,...,n-1) 

with these coefficients the function G(z) will have real values at 
z = I: and z = r.~-*~~ (r is an arbitrary real number greater than zero [21. 
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If the function f(z) had no singular points within or on the bound- 
dary of the basin, the function G(t) would then be equal to zero on the 
whole plane of the complex variable t. i&t in the case under consider- 

ation the function f(z) has a singularity at the paint z = c,, Let us 
find the function G(z) in this case also, 

Near the point 2 = c the function pz> has the form (1.3); hence, 
it follows that near th!s same point the function G(z) will have the 

form 

G(z) = (I.41 

where 

Let us now construct a function g(z) that would be holomorphic every- 
where within the sector - 2o <arg z < 0 with the exception of the 

points z = c0 = pe-ni and z = tin 1 = pe@i’zaifzn-l) and would take seal 
values for arg z = 0 and arg z = - 2a; in addition, the desired function 

must have the form (1.3) near the point t = cg and the analogous form 

near the point c;~_~. 

It can be shown that such a function will be defined by the follow- 
ing formula : 

In fact, let us consider the logarithmic term of this formula. 
has a real value, the fractions 

+ 

(1.5) 

If 2 

: - pe-“’ Ze-2ai - pp- ,,-4ai - p-w ,,-%A (%2-f) - pet”’ 

z I_ pop” ’ ze-2=’ (2fI-‘I) _pe-iLi’ Ze-2ai (2rt-2) _ Pepf ’ ’ ’ ’ ze-.)“i _ pe-pi 

by virtue of the fact that a is an integral fraction of 90°, will then 
be complex numbers with modufi equal to unity. Hence, it follows that 
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the first term on the right-hand side of formula (1.5) has real values 
for t real. 

Let us now take the following two terms from the first sum of formula 
(1.5): 

f--)’ 
(ze-2u'i 

- pe-+ ?+I 7 

f-)” 
(,,-2aij _ pe+ pi 

j’ = 2n - j for j > 0 

i j’ = 0 for j = 0 1 

The sum of! these two terms is a real number; consequently, the first 
sum of formula (1.5) has real values for I: = r. It is possible to 
establish similarly that the second sum of this same formula is a real 
number for I = x too. Thus, the function g(z) has real values for z s x. 

Let us now set E = re -2ar in formufa (I. 5) and consider again the 
logarithmic term of this formula, The fractions 

re-2ai -ppeM 

re-%ai-2ai (2n-2t -ppe'" ' 

re-2aie-2ai (2n-2) _ pe-Pi 

re-2ai _ +i ) 

re-2ai ,-2ai - peP’ 

re-2ai-2ai i2n-31 
-Ppc-‘L’*‘*’ 

re-2uie-2ai (an-l) _ pePi 

,,-2aie-2ui (2~1) ._ppe-~i 

represent complex numbers with moduli equal to unity. 

Hence, it follows that the first term of the right-hand side of 
formula (I. 5f will have real values for I = r,-2ai_ 

Let us consider next both sums of formula (1.5). From the previous 
consideration of the logarithmic term it follows at the same time, i,e. 
by similar comparisons of the individual terms, that each of the sums 
of formula (1.5) has real values for E = ree20r. 

The function g(z), defined by formula (1.5)) satisfies the following 
conditions: 

Let us note afso that the function g(z) takes pure imaginary values 
for z = re-oi* 

In fact, the first term of formula (1.5) is a pure imaginary number 
since each of the products 

b-e 
-ai _ pcpfJ (Fe-ai-2~i (2n--1) _ pe!Ai) 

* -2oi 
(re-"'e 

__#j fre-ni-2ai (w-2t _ppe-eif 

. . * . ...* l . . * ..* * .* . . 
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(re-ai_pepi) (re-ai-2ai(2n-1) _pe-ki) 

(re- ai e-2ai _ pe-pi) (re-ai-2af (2n-2) _ pep’) 

. . . . . . . . . . . . . . . . . . . . 

is a real number. The terms of the first sums 

(-)‘[ (ze-*aii _Ipe-G))+l + (ze-2di :&jk+l ] 

(-)2n-1-’ [ (,,-2ail2n-l-i:_ pe-pi )k+l + (ze-aaI (2n-_1-:) _ pepf )&+I ] 

give by addition pure imaginary numbers if z = re4’, 

The terms of the second sums 

(- )’ [ (z,-z=ij : @Li )” 
1 

- (Ze-2aij - pePi)k 
I 

(_ )2n-i-j 
[ 

1 1 
- 

(Ze-2ai (2~1-j) - pe+’ )k (ze- 
2ai (m-1-j) - peki )k 1 

give real numbers upon their addition. 

Hence, it follows that the function g(z) has pure imaginary values 
for z = rcGi. 

Let us take the designations 

co = pe+, c1 z pe-&i+3ai, . . . , c2n_l = pe-W+2ai @n-l) 

co’ = p#, cl1 = p,#+2ai, . . . , c12rL_1 = p&+?ai (2~1) 
(1.7) 

and consider the function 

(2 -- co) (z - c,‘) (z - c3) (2 - c3’) * . (z - c’2,*_l) 
x (2) = z In (z _ c”‘) ( z - Cl) (2 - cz’) (z - c3) (z - C2n_l) (1.8) 

which enters into formula (1.5). 

ne function X(Z) as well as the function C(z) has real values for 

z = x and z = re-2oi. 

Thus, the single-valued function 

n-1 

G (z) - x (z) = 2 a,,. [f(lrtl) (z) + ivf(“) (z)l - x (z) 
k=o 

(1.9) 

takes real values for z = x and z = re-2ai. 

The function which is equal to the sum of the last two terms of 

formula (1.5) 
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al so takes real values on the sides of the angle z = 0 and z = remzai. 

Hence, it follows that the function (1.9) can be continued onto the 
entire complex plane and its values coincide* with the values of the 

function h(z); thus, to determine the unknown function f(z) we obtain 

the differential equation 

n-1 

2 ak [fck+*) (z) + ivffk) (z)] = x (z) + h (z) 

k:;,, 
(1.11) 

2. Let us turn to the integration of equation (1.11). The correspond- 
ing homogeneous equation has as its characteristic equation the follow- 

ing equation: 

k=.” 

The roots of this equation are 

A0 = - iv, hi = - ivx, AZ = - ivx2, . . ., A.,_, = - iv%“-r 

(% = e-2ai = e-ni /n) 

The general integral of the homogeneous equation is written as 

f tz) = Co& + C,ehlz + C2eha + . . . t- G-1 eAn+ ’ 

(2.1) 

(2.2) 

l’he particular solution of the inhomogeneous equation (1.11) is found 
by the method of variation of parameters. 

Letting C,, Cl, C2, . . ., C,_l in (2.2) be unknown functions of the 

variable z, we obtain 

. In fact, these functions can differ from one another by a pure imaein- 
ary constant number which, however, can be taken equal to zero. 
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(k = 0, 1, 2, . . . , n - 2) 

c’c, eA,z 1-1 
dz 

o 

The solution of this system of equations has the form 

dCo A0 -hg 
1 1 . ..i 

--vv”-‘g(z)Te , 
dz - b 1L1 . * * h-1 

dC1 
--V 

'1 -A,z 
“-‘g(z)‘;i-e , 

A = li,,a 
dz - 

A,% . . . Ai_, 
. 

. . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . 

dG-1 A 
_ = vn-1 g (a) * e-h-l z 

dz 

Here Ao, Al, AZ, . .., An_1 are the minors of the determinant A which 

correspond to the elements of the last line and which are taken with 

the corresponding signs. 

We have 

A=A,(I.,--J (&-&j...(&-&_r) 

A = A, (I1 - &) (A1 - &) . . . (& - &_,) 

A = Al (I., - h,,) (AS - &) . . . (& - &) 

..,....... . . . . . . . . . . . 

A = An+ &_,-- &,I (&,_I- &) . . . (&-,-- &,-a) 

Let us take the notation 

With this notation we have 

A A A 
-ii; = A’ (&), _- A1 = A’ (,,, * * *9 An_1 - = A’ (&-1) 

Consequently 

G -= 
dz 

-& g (z) e-hz , 2 = -&&- g (z) e-‘lz , . . . , 

Hence, denoting the arbitrary constants by Ku, K,, . . ., K,,_l. we have 
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z 

C n-l (4 = K,_, + At ;;it, ) ‘j g (S 1 e+-l’ d5 
0 

‘Ihe resultant expression for the function f(z) will have the follow- 
ing form: 

f (z) = KoeAof + K,&’ + . . . + K,_, e’+lZ + G ehoz 1 g (5) e-Aoc 6 + 

0 
I 

p-1 
-I- - eAlz g(lJe-XI’:d5 + . . . + A&ean-lz\ 5 N &I o 

g (5) e-‘-l I: dc (2.4) 
n1 0” 

Let us note the formulas for the derivatives /\‘(A,), A’(h,), . . . , 

uhn_l) 

A’ (X0) = (ho - h,) (ho - h2) . . . (ho - A”-,) = 
= (- iv)n-’ (1 - x) (1 - 2) . . . (1 - P) = 

= (2V)“-1e-“‘n’(n-1) sin U Sin 2U . . . sin (n - 1) a (2.5) 

A’ (h,) = (t)” A’ (ho) taa a tm 2a . . . tpn sa (S = i,2, . . . ,n--I) 

Let us also note the formulas for the conjugate quantities 

A’ (A,) = $2 Xi P-l) A’ (A,), A’ (he) = - -+ A’ ( h,,_s-l) (2.6) 

3. Let us determine the constants K,, Kl, . . . . K,, 1 which enter into 
(2.4) so that condition (1.1) and the condition equi;alent to (1.2) 

Im f (2) = 0 for z = re-ai = z’ (3.1) 

are satisfied. 

Condition (3.1) can be rewritten as 

f (2’) - fq?y = 0 

From formula (2.4) we have 
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The asterisk indicates that the expression within the parentheses 

should be replaced by 

using formulas (2.5)) 

gT= 

We obtain 

its conjugate. Let us transform this expression 

(2.6) and the following: 

f = K,_leA*z’ + Zn_2eh1z’ + . . . t_ Kgehn-Jz - 

0 

Thus. we obtain 

ehlzt 
2’ 1’ 

-b< d;_+ - 

A’ (h) c A _z’ 

g(5) e-*l< dL+...+ en l 

A’ (& ) s 
g(5) e-hn-1c 

6 0 

7 
f (2’) - f (2 ) = w, - K, _l) e”Oz* + (K, - K,_,) eA1” + . . . 9 (Kn_l- Gl e An-1z’ -I- 

But, since the function g(c) has pure imaginary values for 5 = red’, 

then 

f (g _ f = (K, - K,,_,) phur’ + (K, - F7,..,) ehlz’ + . . . + (K,_l - Q &l*’ 

Hence, it follows that in order to satisfy condition (3.1) all of 
the terms in parentheses must be equal to zero 

K, - i;l_l = 0, R, - K,_, = 0, . . . , . l-C,_, - K, = 0 (3.2) 

Let us now turn to condition (1.1). Using formula (2.4). we find 

2 + ivf = KO (LO t_ iv) ehoz 4 K, (h, + iv) e h,z x + . . . i- K,_, (h,_l $ iv) e ~1 i- 

n-1 

+ p1 
?l--l a + iv z 

g (‘) 2 & + Vnel 2 : (I 

p=o 
P 

p=o 
‘P 

) ehpL \ g (5) e-xPr dc 

IT 
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The next to 

sequently 
last sum is equal to zero. In addition A,, + iv = 0. Con- 

df 
x + ivf = K, (h, + iv) ehl* + K, (h, + iv) eAzZ f . . . + 

0 

Let us demonstrate condition (1.1) using this formula. Taking into 

account that the function g(c) has real values for I = x, we obtain 

.x 
p-1 ~_ %+A’(h,) c ” g(iJe -“’ d;l (hp f iv) ehPX - 

0 
x 

Vn-l hr 
- z;,+=Y==== A @,I s g(<)e-i;pAdc I (xp- iv)e p =O 

p=1 0 

Let us transform the left-hand side of this equation using the Pro- 

perties of the quantities Ap and I\ (Ap) as well as formulas (3.2). We 

obtain 

n-1 

2 [Kp (h,+ iv) - Kp_l (hp - iv)] ehpr + 

p=1 

_p p1 
n-1 h, -i_ iv 
21 -r&p 

I.,- iv 3 
*A, (hp_J I s ,hPX g (5) eekp’ 4 = 0 (3.3) 

p=1 0 

Let us show that the quantities’ 

h, fi iv h, - iv 

4 - A’ (h,) + x F (hp_J 

are equal to zero. Substituting the expressions for A, here, we obtain 

a new representation for the quantities A 
P 

L 

1 - xp 
A,= iv 

x (1 f xp) 
mq--- 

A’ (hp-J I 

Substituting here for l\‘(hp) and A’(hp-I) from expression (2.5). we 

find 

VXP 

AP= ip-lAr (&) 
[ ~)t a (1-3~~) - i (1 + xp)] c0t a c0t 2a . . . ~)t (p - 1) a 

But the quantity in the square brackets is equal to zero. Consequently, 
A 

P 
= 0. 

Formula (3.3) can now be written as 
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n-1 

2 [KP (A,, -fi iv) - K,_, (hp - iv) J eXpX = 0 
p=1 

Hence, it follows that 

K, (hp d- iv) - K P_l (A, - iv) = 0 (p = 1, 2, . . .) n - I) 

Substituting here the expression for Ap, we find 

K, = iKP_l cot pa 

Consequently 

K, = iK, c0t a, K, = i2 K, Cot z .~t 2a, . . . 

KP = i” K, ~)t a cot 2a . . . cd pa, . . . 

K n-1 = 
i”-1K Q d a WI 2a . . . c0t (n - 1) a 

Substituting these expressions for K into condition (3.2). we come 
to only a single consequence 

K, = ae -k/,ni(n-l) 

where a is an arbitrary real number. 

Having determined the constants K,, K,, . . . , K,_l, we obtain the re- 

sul tant expression for the function 
(3.4) 

n-1 

fez) = 1 p (ae-v.~i(n-~) + (-~~~-‘i g(c) e-‘prdt;) eaPz co, 01 cD( 2a . . . cot pu 

p=o 

Here h’(hO) is given by formula 

A’ (A,) = (2Y) - * 1 /l*ni(“-l)sjn a sin 2& . . . sin (n - 1) a 

for n = 1 it is necessary to take A’(A,) = 1. 

4. Let us transform formula (3.4) into another form. The function 

g(5) is the sum of two terms x(z) and h(z) which are determined by 

formulas (1.8) and (1.10). Let us take the integral which enters into 

formula (3.4) and transform that part of it which corresponds to the 

function x(z), i.e. let us take the integral 
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lking the formula for integration by parts, we obtain 

;r(..) -ii’ J-.----;---I: 
‘71 , \, -“j j -cj, 

Formula (rj.4) can now be represented in the following form: 

It should be noted that the product cot a cot 2a . . . cot pa must be 
replaced by unity for p = 0. 

With the help of formula (4.1) we find the equation of the wave sur- 

face 

” == -- $ 
2 sin ot Ha f (z), z== 2 (4.2) 

Special interest lies in the form of the surface at distances far 

from the origin of the coordinate system, i.e. from the point of inter- 

section of the average level of the Eluld with the bottom of the basin. 

Therefore, let us give the variable z - x in formula (4.1) an infinitely 

large positive value. For x = m we have 

lim e"pX-' i h (5) e&'& = 0 (p *-= 1, 2, . . ,, n - 1) 
X=03 

0 

lim x (2) = 0 
.T--crJ 

Consequently, for large values of z = x we have 



Periodic u~aves generated by a source 1569 

Let us introduce the notation 

00 pa . 
A +Bi =N(ho) 

I[ 
xJh (5) - g ‘gl (-)j (& - &)] e+c d5 (4.3) 

0 j=O 

We then obtain 

f (x) = {IA + ~cos~/,Jc(~-_)I + i [B-asin’/,n(n--)I) X 

x (cos vx - i sin vz) 

Hence, from formula (4.2) we find 

7 = - (a / 2g) [A + a cos 9, a-c (n - I)1 [sin (vz + at) - sin (~5 - at)]+ 

+ (a / 2g) [B - a sin ‘/,n (n - I)] [cos (vz i- Ut) - COS (vz - at)] (4.4) 

5. Through integration by parts formals (4.3) can be reduced to the 

form 

Fj [(1 - x’) S (Cj) $\ (1 f Xi) S (Cj')] (5.1) 

having introduced the designations 

0 

Repeatedly using integration by parts. we find the formula 

s, (4 = &y I (--)“-1 (n - 2)1 +F (-r2(n- 3++ 

f(--)“-3(n - 4)l s + . . . 
C 

+ (-)I q + ( iv)n-l S (c)} 

The integrand function of formula (4.3) can be represented as 

2n-1 

h(t)-& x 6)j(&+$= 

j=O 

n-1 2n-1 

= & 2 b, 2 (-)jx-j("')[ (5._ ijjk+l + (5 -iCj')ktlI - 

k=O j=O 

(5.2) 

(5.3) 
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Having noted this result, we obtain after applying the general 

form1 a 

By virtue of the value of K all 

hand side of this formula with the 

thus 

the sums which enter into the right- 

exception of the last one vanish and 

The formula 

can be established as well. 

At the same time we have 

(5.4) 

y’$j’(-jj (++ -[+) 2°C df, -~ 2y(-)j is ccj) - 5 (c;)l (5.6) 

0 j=O j=n 

Using formulas (5.3). (5.4). (5.5) and (5.6), the ewality 



Pertodrc waves generated by a source 1571 

r[h (~)--&~g~(-)j($+--&)] e”‘dS= 
0 j=o 

[s cci) + s pi*)] - 

k-o j=0 

can be written. 

Let us transpose the order of the summations on the right-hand side. 

We obtain 

But the interior sums are equal to Fj. Hence we obtain formula (5.1). 

6. Let us return to the results of Section 3. To the function j(z) 

let us add a function which defines standing waves that depend on sin at. 

For these waves we have 

where 

1.0~ (2, t) = fI (2) sin at 

fl (z) = be-‘.ini(n-1) [eU -I- i QH a &a2 + i2 co( a cot 2a $9 + 

+ . ..$-in-‘.,t aCOt 2a... ~~r(n-lI)ue’~-~~l 

The real number b has an arbitrary value. In accordance with this func- 

tion the elevation of the fluid at large values of x is determined by 

the formula 

q1 = (ba / 2g) [cos l/,n (12-l) cos (vs + tit) - sin 1/a n (n - 1) sin (vs+ at)1 + 

+ (ba / 2g) [cos 1/q rc: (n - 1) co.9 (v5 - at) - sin’/, 3t (n - 1) sin (vz- ot)l 

Let us add the ordinates ql to the ordinates of the wave surface 
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represented by formula (4.4). We obtain 

H = [$ COS~7t (n - 1) + gsin$3r (n- 1) -c$] cos (v5 - ot) + 

+[: 
COS+ 2% (n - 1) - & sin $ n (n - 1) -f- ‘$] sin (VT - at) $-- 

+[5 
COS-~rI (n - 1) --sin$.7. (n 

2g 
- 1,+$] cos (Y5 -t at) - 

- sin (vt -1 at) 

Let us set the condition that the waves must vanish at 

virtue of this condition the coefficients of the last two 

functions must vanish. Hence, we obtain the values of the 

efficients a and b 

infinity. By 

trigonometric 
arbitrary co- 

a= _ A ~0s It (n F *) + B si 11 d!LfS, b = _ A sin Z!!LfL!’ _ B ~0s n!LF> 

For these values of a and b the equation of the wave is written as 

H = - (OR i g) cos (~5 - al) for n E 1 (mod.‘t) (6.1) 

H = - (a / g vz) (A $ B) c,os (VT - ut f 'i, TX) for n s 2 (mod4) (6.2) 

H =_ (CT/! ! g) sill (YX --- Ut) for II Lo :3 (mod 4) (ci.3) 

H = (U 1 g’I/Z) (A -- ZI) sin (v.r --- at 1 ‘/a R) for n 

‘Ihe quantities A and B are given by formula (5.1). 

7. Let US use the formulas obtained to investigate a 

cases. Let us consider first waves which proceed from a 

inside a right angle. Tn this case n = 1. Conseqently, 

must be worked out which leads to the well-known result 

q ::: _T-e- 2sy ~“!A cos YZa cos (Y5 - at) 

In fact, in the case under consideration we have 

series of speciai 

source located 

equation (6.1) 

(7.1) 

x=-l, a=1/2rt, A’ (ho) ==- 1, cg’ = pepi, c1 L _ pe-pi 

The calculations show that 

We have 
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co 

A+Bi=$-- ,ivC 
dC 

03 

A-_Bi=* ,-iv< 
dC 

Hence 

a, 

2Bi = +- eiVr. dt; 

Calculating this integral by means of residues, we obtain 

B = 2qe-vv~ cos VX,, (p& = 20 + kd (7.2) 

Turning now to formula (6.1). we obtain (7.1). 

Let us now take n = 2. In this case we have a = 45’. 

Carrying out the calculations, we find the following expression: 

--+(A _tB) = -+ye- -~cos(~n + vp cosp)+ (7.3) 

+ e-vpcoapcos 
( 
:3x + Vpsinp 

11 

for the amplitude of the wave of (6.2). 

Let us indicate the values of the various quantities which are neces- 

sary to work out formula (5.1) in the case under consideration 

1 x=-i , a, 7 1, al- -- 
vs 

A’ (&) = v Jf/Ze-w 

F0 = 1 - i, F, = 2, F, = 1 & i, Fs = 0 

Working out formula (5.1)) we obtain 

(A $ Bi) e-‘/% 1/f?/ q = [(I - i) S (co’) - (1 -$ i) S (C-J] - 

- i [(I f i) S (c,) + (1 - i) S (c,‘)] 

Along with this formula the following formula can also be written, 

taking the conjugate quantities: 

(A - Bi) e”4% v 2 / q = [(I + i) 3 (co’) - (1 - i) 2 (cp)] -!- 

+ i [(I - i)S (cJ + (1 -f i) S (cl’)] 



Let us add these two formulas term hy term and, using the int.egral 

residues, determine the differences betseen such integrals as .c<f,‘) - 

sic,) which enter into the right-hand side. After clarfyfng this out we 

obtain equality (‘7.3). 

f.et us now assime that rr = 3; the angle a will he eq3.d to .xP. 

Ckrrying ouc the calculations, we find the following expression for 

the anpli tude nf the waves of (6.3): 

Let us cite the value3 of the quantities which EWE? needed to work 

out formufa f5.f) 

tctt us work mlt formuZa (5.1’) 

Simultaneously with this formula the conjugate formula cm he written 
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Let us cite the values of the quantities which are needed to work 

out formula (5.1) ; we have 

31 = II 
,2 Jcit (1 - i), a0 = 1, a1 = v-1 (V/z _t I), cl3 = v-2 (1/Z + I), a3 = v-3 

A’ (ho) = - l/&e ‘/,ni , Fo=- 1/2(i-+i), P,=2-22i()/2+1), Fa=4+2 1/z 

F, == 2 + 2i (v/2. -+ I), F, = - v/z (1 - i). F, == 0, F, = 0, F, = 0 

Let us represent formula (5.1) and its conjugate in terms of these 

quantities; adding these formulas term by term, we obtain 

- n / 2q (‘4 - B) = (1 e i) [S(c,) - S (&)‘)I + (1 - i) [S (c,) - S(co))] + 

+ (f -+ 9 [S(c,‘) - S (41 -I- (1 - 4 IS (c,‘) - S(cJl f 

+ (1 $m V% (1 - 4 If(cJ) - S (cl’)] f (1 + 1/i) (1 + i) IS (~3) - S(c,‘)] + 

6 (1 + V2) (1 .- 4 IS (~3’) - 9 WI + (1 + 1/i) (1 + 4 [S @,‘I - S(cdl 

Computing the quantities within the square brackets with the help of 

residues and carrying out the necessary transpositions, we obtain 

formula (7.5). 

8. Formulas (7.3), (7.4) and (7.5) permit the position of an oscillat- 

ing source which will not transmit progressive periodic waves to in- 

finity to be found. To determine such source positions it is necessary 

to solve the equation obtained by setting expressions (7.3)) (7.4) and 

(7.5) equal to zero. 

Let US consider the very simple case a = 45’; to solve the problem 

the equation 

e-“Psi” pcos (‘/,a + Yp cos p) + e-up cosp cos (1/43t + VP sin p) = 0 

must be investigated. 

Let us set x = vp cos p and y = vp sin p. This equation then reduces 

to the form 

eT cos (1/4 n .-t-x) = -e+ cos (1/4 a~ + y) 

A curve showing x as a function of y can be drawn from a geometrical 

construction of the left- and right-hand sides of this equation. This 

curve consists of an infinite number of separate branches located be- 

tween the x-axis and the bisector of the coordinate angle, since x > y 

(Figure). 



Let us assume that the angle u is given; the ratio of XT to y is then 
known to be equal to cot IJ > 1. Let us intersect the constructed curves 
x = x(y) with the straight line x = 3 

cot V; we then obtain an infinite 

number of points of intersection. The 

radius vector which connects the origin 

of the coordinate system with some 

point of intersection will have a 

length equal to vp. An infinite set of 

such quantities vp,having a limiting 

value of m will be found. Consequently, 

if along with the angle u the distance 

p of the source from the origin of the 

coordinate system is given also, an $n__-___-_--______~ 

infinite number of different frequencies Y 
tending to infinity will be found which 

do not generate periodic progressive 

waves that are transmitted to infinity. If, however IJ and v are given, 

then an infinite number of different values of p are found which to- 

gether with u determine an infinite number of source positions with zero 

amplitude transmitted waves. 

It is also possible to regard curves of p as a function of p con- 

structed on a plane within the angle - a < - u < 0 as the locus of the 

positions of sources which do not transmit progressive waves to infinity. 
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