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In recent years a large number of investigations devoted to considera-
tion of the wave motions of a fluid in basins which have a plane bottom
inclined to the horizon have been published. These investigations are
described in sufficient detail in Stoker’'s book [1] and in Wehausen’s
long review article [2].

The problem of waves excited on the surface of a fluid by a period-
ically acting source located at a given depth above a uniformly inclined
bottom is considered below. The investigation is carried out for plane-
parallel potential motions, using methods presented in [1.2].

1. Let us assume that the angle a« of the inclination of the bottom
to the horizon is an integral fraction of 90°, i.e. a = w/2n.

We shall call the characteristic stream function w(z, t)

w(zt)=¢(r,y; t) + iV (z,y; 1)

If the axis Ox is drawn along the average water level, the axis Oy
directed vertically upwards and the point O taken at the intersection
of the free water level with the bottom of the basin, the following
boundary condition will then obtain for all positive values of x:

(az‘P La 5’2) —
arr ' ° ay /y=o0

Let us consider periodic moticns with frequency o; we shall assume
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w(z, 1) = f(z)cosat,  [(2) =@ (z,9) + iV (z,y)
¢y t) =9z, y)cosot, Y (z,y 1) = (z,y) cosat

The new function ¢(x, y) will satisfy the condition

& —v).=0 (=7

Let us rewrite this condition in the following form:
Im (df/dz + ivf) = 0 forz==x (1.1

In addition, the function ¢(x, y) must also satisfy the following
boundary condition:

dp . 3
—6%51na+%cosa= 0 for y=—2zwna

This last condition can be rewritten as
Im (¢2df/dz) =0 for argz=—a (1.2)

Besides these conditions, we shall require the function f(z) to be
holomorphic about the point z = 0.

Let us assume that the waves on the surface of the fluid arise from
a source at z = pe‘“i = ¢, having a periodic output Q = g cos ot. By
virtue of this assumption the function f(z) will have the following
form in the neighborhood of the point c

f(z)=%ln(z~00)+... (1.3)

Thus, the analytic function f(z) must satisfy conditions (1.1) and
(1.2), must be holomorphic at the point z = 0 and must have a loga-
rithmic singularity at the point ¢,. To determine the function f(z) in
accordance with these conditions let us consider the following function
of a complex variable:

n—1

G (2) = D) ax [f%V (z) + ivf® (2)]

k=0

The coefficients a, here have the following values:

a, = 1, ak=ikeotd-oo12a...eot ka k=1,2,...,n—1)
v

With these coefficients the function G(z) will have real values at
z=xand z = re"2®% (r is an arbitrary real number greater than zero [2].
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If the function f(z) had no singular points within or on the bound-
dary of the basin, the function G(z) would then be equal to zero on the
whole plane of the complex variable z. But in the case under consider-
ation the function f(z) has a singularity at the point z = ¢o- Let us
find the function G(z) in this case also.

Near the point z = ¢, the function f(z) has the form (1.3); hence,
it follows that near this same point the function G(z) will have the
form

-1 n—-i

= vy __ivg b
G(2) = o In (z—¢p) + &Jt Z )k+1 25 kml(z__ff:;')'}?““‘-.. (1.4)

where
by = (—)¥kla,

Let us now construct a function g{z) that would be holomorphic every-
where within the sector — 2a <Carg z < 0 with the exception of the
points z = ¢, = pe i and z = ¢, | = peMit2ailZn-1) and would take real
values for arg z = 0 and arg z = ~ 20; in addition, the desired function

must have the form (1.3) near the point z = ¢, and the analogous form

e | n—1

. b i b
=¥ 3 ivg &
g(?)=-=In(z— cmwl)—}— $‘____7.....,______.__..., eI
2n 27 d = a—c 2n-1)kﬂ an iy (z—c 2n—1)k +

. '
near the point ¢, .

It can be shown that such a function will be defined by the follow-
ing formula:

[ (5 (2672 — pebd) (a8 —pe¥) | (ze7 22 0 — o)

e (s B e ) (s ) | (se 0 ) g #)
f--}  2n—1

g(z) =

9 Ny 1 . 1 } _
+ 3 k§0 b P (=) [ P BT T T2t _pgetyirt
-1 an—1 1 "
w5 ] s
k‘:ﬁ * 2‘?’) = (2678 —periyk (€72 —pettyk (1-5)

In fact, let us consider the logarithmic term of this formula. If :z
has a real value, the fractions

" —pf —zai i —gui —f —2af (3~ 3
£ —pe B z2e 2% L pet 23 g 7720 (1) _ g g0

—2ar (2n-1}) ~2ai (gn~2) ETS ~f

2 pett T e —peH’ ze — et T e g
by virtue of the fact that « is an integral fraction of 90°, will then

be complex numbers with moduli egqual to unity. Hence, it follows that
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the first term on the right-hand side of formula (1.5) has real valyes
for z real.

Let us now take the following two terms from the first sum of formuls
(1.5):

= =) (}" =2n—] for j>0
(36*2&5}' . pgwp-t' )k—!-l ? (ze—2ﬂif"_‘_ pep»i )k+1 j" == { for j = 0 )

The sum of these two terms is a real number; consequently, the first
sum of formula (1.5) has real values for z = z. It is possible to
establish similarly that the second sum of this same formula is a real
number for z = x too, Thus, the function g(z) has real values for z = x,

Let us now set z = re~2%% in formula (1.5) and consider again the
logarithmic term of this formula. The fractioms

o200 pe““i re0E R0l o o
re-?zz:'—%ui {2r-2} __ pep.i + re3xE-20L {20-3) p A
rg’*'jzﬂl. e-zui 2n-3) _ pe-;u' re«zai g——zau‘ @n-1) __ p g}xi
re 2% b ot * r e—zal i (@n-1) Pe—pi

represent complex numbers with moduli equal to unity.

Hence, it follows that the first term of the rgght«hand side of
formula ¢1.5) will have real values for z = re—2C%,

Let us consider next both sums of formula (1.5). From the previous
consideration of the logarithmic term it follows at the same time, i.e,
by similar comparisons of the individusl terms, that each of the sums
of formula (1.5) has real values for z = re-2%%

The function g(z), defined by formula (1.5), satisfies the following
conditions:

Img(z) = for z=2u, 7 = re-2% (1.6)

Let us note also that the function g{z) takes pure imaginary values
for z = re~ %,

In fact, the first term of formula (1.5) is a pure imaginary number
since each of the products

ol ~@i-2ai (2h~1) __ pe"*“)

(re™® — et (re
{re—aie——ea[ o pem) {re—czi-—gczf (-2 {26“"3“[)

P A s s s e » I
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(’,e—ai _ pe*‘") (re—ai—Zai (en-1) __ pe-—p.i)
(re'ai e2% pe—pu') (,.e—ai—zat (2n-2) __ pe“i)

is a real number. The terms of the first sums

1 1
-
) [ (ze-zaij _ pe~pi)k+1 + (ze—‘zai] _ pep.i )k+1 ]

(— )2"‘1"[ S— T :
( g6~ @n~1-j) __ p e b4 )k+1 ( 2 e—aal (en-1-f) __ p epi )k+1
give by addition pure imaginary numbers if z = re~ %%,

The terms of the second sums

1
7 —
() [ (2623 _ pgbiF (26 35 _ pep )i ]

(— )2n—1-:i [ - 1. - — - 1 - -
(ze‘z‘“ (2n-1-j) __ pe P )k (ze“z‘“ @n-1-j) __ pett )k
give real numbers upon their addition.

Hence, it follows that the function g(z) has pure imaginary values
for z = re~<%t,

Let us take the designations

Cy = pe‘l“, ¢, = pe‘*“”“‘, e, Cong = pe—pi+2at (2n-1)

, . ) o . (1.7)
¢ = pep.l’ cl — pe;u+2a1‘ e, C‘zn‘l — pe[.LH‘.’al (2n-1)
and consider the function
_ f_‘ﬁ (z-—-c)(z—c}(z—c3)(z—¢e3)...(z2— L
% (2) = 21 In (z—c)(z—c))(z—e)(z2—¢e3) ... (2 — Con-1) (1.8)

which enters into formula (1.5).

The function x(z) as well as the function G(z) has real values for
z =x and z = re-2ai_
Thus, the single-valued function

n-1

G(2) — 5 (2) =2 ax [f*¥D (2) + wf® (2)] — y (2) (1.9)

k=0

takes real values for z = x and z = re-29%¢,

The function which is equal to the sum of the last two terms of
formula (1,5)



1562 L.N. Sretencki

n-1 R §
e =2 B 3 ()| ' + 1 ]~

: e —5 — — -

2n o i L(ze 2aij —pe m)kﬂ | (ze'%”—pem)k“
1, et (1.10)

g 0 Y% j 1 1

Tim =T 2 (=) [‘; -2aij __emwivk T e Y-

k=1 j=0 ("e — Pe ) (ze - *peﬂ )

also takes real values on the sides of the angle z = 0 and z = re-29%,

Hence, it follows that the function (1.9) can be continued onto the
entire complex plane and its values coincide* with the values of the
function h(z); thus, to determine the unknown function f(z) we obtain
the differential equation

n—1

2 a (%0 (2) + ivf® (2] = x (2) + h (2) (1.11)

k=0
2. Let us turn to the integration of equation (1.11). The correspond-
ing homogeneous equation has as its characteristic equation the follow-

1ng equation:

n—1
> ap AF 4 wA¥y =0 (2.1)

k=0

The roots of this equation are

Ao = — v, Ay = — ivit, Ay = — iv?, .., Aoy = — vl

(% = g2 = g~mi/m)

The general integral of the homogeneous equation is written as

f(2) = Cogrt + Cyeh® + Coe? + . .. 4 Coyen1” (2.2)

The particular solution of the inhomogeneous equation (1.11) is found
by the method of variation of parameters.

Letting Cy, C,, C,, ..., C_; in (2.2) be unknown functions of the
variable z, we obtain

¢ In fact, these functions can differ from one another by a pure imagin-
ary constant pumber which, however, can be taken equal to zero.
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dCy 2 C
E_zgeozko . M

Cn—l

M* +—-eh’x ... ¢

1y k=0
(k=0,1,2...,n—2)
ac

dC n-1 dCl . dCz n-1 -1 Apq%.n-
gz—oe)“’zxo + T2 eh‘zl;t 1 + Ee)"zlz <+ ... $ -—dfz—e n-1 Kz_i = v"‘lg (2)

The solution of this system of equations has the form

d_Co ne1 Ao Az 1 1 oo 1
dz =V & (2) A ¢ s e M A’n—l
dC,

Here A ., A, by, ..., A, _, are the minors of the determinant A which
correspond to the elements of the last line and which are taken with
the corresponding signs.

We have

A=A —2) Ag—2y) ... (Ag— Ry )
A=Ay y—h) (oD ...y — Ay
A=A,(l,——-}.°) (Az—}q)---(la-kn—l)
A = An—l (A’n -1 .)";). e A’1) . (A'.n—l—}‘n‘a)

Let us take the notation

AN =GQr—2A—-A) A—4r)...A—hA,)

With this notation we have

A A, A )
D= A (M), A, =A (M), + + o —A—n——l— =A (A,

Consequently
dC vl _ dC vl
d_z.=mg(z)eloz’ dz1 A (A g e™, ...,
an_l v""l

& A G ¢ (2) e Pn-12

Hence, denoting the arbitrary constants by Ko, Kl, ey Kn_l' we have
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n-1 n-1 z
Co(a) = Ko 4 A—v@oy S g @) e™eat, C,(2) =K, + 7\1@ Sg @) eMCag
0 ) (2.3)

N
Coy 0 =K, | % ,vz(;‘n—_r) Ve @) em1t
[}

The resultant expression for the function f(z) will have the follow-
ing form:

4 z 2 n-1 2:
F(2) = K + K b Koyt oo g @) erva +
0

vn—l

- S gRY ML+ 4 g
A (M) A

J "(Mny)

gR)e1tdy  (2.4)

Sl I N

Let us note the formulas for the derivatives A'(AO), A'(Al), cee,
A'(An_l)
A (7‘0) = (}"o - )"1) 0"0 - 7"2) e (xo - )"n-l) el
=(—w)"T =% —x)...(1 —%"H=
vl Vgin asin 2. . .sin (n — 1) & (2.5)

x|

A’ (x,):( )’A' (M) tan 0 tan 20t . . . an S&  (s=1,2,...,n—1)

Let us also note the formulas for the conjugate quantities

A (hy) = el ™ DA (), AR) = — A (hne) (26)

3. Let us determine the constants K, K;, ..., K, which enter into
(2.4) so that condition (1.1) and the condition equivalent to (1.2)

Imf(z2) =0 for z=re=1y (3.1)

are satisfied.

Condition (3.1) can be rewritten as

f@)—1(E)=0

From formula (2.4) we have
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T@) = K™ 4+ Ky 4 ... + K, 1?4

nt el,,z’ z AL )\z
+v (o §g(c)e L dt F

Ap_g2 F

FO) &Lt ga— Sg@)e ni® gp)

DELTIN

The asterisk indicates that the expression within the parentheses
should be replaced by its conjugate. Let us transform this expression
using formulas (2.5), (2.6) and the following:

T ¢ TR ¢ A ’
Mz’ = A7 M2 =0y ot Ay 3 =gz

We obtain
f(zl) — fn_le)\-l' + R‘n_zelll' *} . +]?°e)\"_;12'___
o2 z Az ! )\ 7 2z’
EPRES SELI Wy /o QU W 2 ) e n-1 S W
v (57 § 5O Mt 5 5 POt f s | a@eta)

Thus, we obtain

P —T@) = Be— K ) ™ ¢ (K, — Ky )M .. 4 (K, _—Kye 1" 4

)02’ o . N N
4yt <A?(7»o) 5 |: g ) < g(@)j’ ev)\"\'d’; E%'Af(}u) % [E €+ g(C)] C_Mtd§+

0

’

z
Ap g7

+o T [g@) + 2@—)] ettt )
0

But, since the function g<g) has pure imaginary values for Q = pe®t
then

f(2) — f(2) = (Kg— ]?n*]) Mk (Ky — 1?,1__2) eMT 4L (K — Ky e*n1?

Hence, it follows that in order to satisfy condition (3.1) all of
the terms in parentheses must be equal to zero

Ko— K, , =0, K, — K, ,=0,..., K, —Ky==0 (3.2)

Let us now turn to condition (1.1). Using formula (2.4), we find

% + ivf = Ko(ho+ iv) € 4+ Ky (Mg + V) M+ . Ky (b, + V) €M1

_ —17»-{—1\’ zz B
0 Y § (AH“’“Z o s e
0

p=0
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The next to last sum is equal to zero. In addition Ao + iv = 0. Con-
sequently

_ﬂ N f : Az : Az
dz'*‘wf—Kl()‘q‘\f"W)e‘+Kz(lz+lv)ez+~--+
K An_1? n-1 ‘—l;" )\pzz ~An%
TEpy (hng T V) e + v Z A’(A.) € Sg((;)e v
p= 0

Let us demonstrate condition (1.1) using this formula. Taking into
account that the function g(g) has real values for z = x, we obtain

n—1 . n-1

et
2 IAKP+A’ )

x
v
r=1 0
x
0

g @) e dg] (hy + ) P —

g)e " d;](Ip— iv) JF o

Let us transform the left-hand side of this equation using the pro-
perties of the quantities Ap and A'(AP) as well as formulas (3.2). We

obtain

n—1

Z [Kp (A, + V) — K, (A, — ] o P~ +

p=1
- Ayt iv A,— iV N A
1Z[A'x) ( 1)]6" §g(€)e PPt =0 (3.3)

Let us show that the quantities’

Ay + iv Ay — v
Ap = WGy TR Gy

are equal to zero. Substituting the expressions for Ap here, we obtain
a new representation for the quantities AP

=% x4 %)
4, = | Gy~ Ay ]

Substituting here for A'(Ap) and A'(Kp;l) from expression (2.5), we
find

P
had Leot @ (1—%F) — i (1 4 xP)] ot @ cot 2@ - + . cot (p — 1) @

A = ———F—7—
PTPTIAY ()
But the quantity in the square brackets is equal to zero. Consequently,
Ap = 0.

Formula (3.3) can now be written as
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n—1
. . A,x
DK, O+ ) — K, (hy— iv]eP =0
p=1
Hence, it follows that
Kp(kp+iv)—Kp_l(kp—iv)=O r=12,...,n—1)
Substituting here the expression for /‘\p, we find
sz iKp-l cot pa
Consequently
KlziKo cot &, K2=i2Ko cot A cot 2a,...
Kp= iPKy cot @ cot2d ... cot pa, . . .
Kn—1 = in_lKo cot & cot 2& . . - cot (n - 1) a
Substituting these expressions for K into condition (3.2), we come
to only a single consequence
K, = ge=imin-1)
where a is an arbitrary real number.
Having determined the constants Ko' Kl, cen, Kn-l' we obtain the re-
sultant expression for the function
(3.4)
n—1 PP -1
1) = 3 P (aetriiny o L0

—o A’ (ho)

SN

g @) e“v‘dc)e*p’ cot O cot 20 . . cot POt

Here /\'(7\0) is given by formula

A (A = W) e Vgin o sin 2a . sin (n — 1) a
for n =1 1t is necessary to take l\'()\o) = 1.

4, Let us transform formula (3.4) into another form. The function
g(l) is the sum of two terms y(z) and h(z) which are determined by
formulas (1.8) and (1.10). Let us take the integral which enters into

formula (3.4) and transform that part of it which corresponds to the
function x(z), i.e. let us take the integral

J=\x@ et a
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Using the formula for integration by parts, we obtain

L 2n-1 :
A A C e IS L S PRV O (R S S DR VL
: A, 2k, = (=) \ e et dg
g 0

Formula (3.4) can now be represented in the following form:

n-1

N ST , _qlup n-1 3 v
f(z) =) (\ae ATHRED A G xh Q) e’r dg) “oot (... cot paL-f-
p=0 O
ivgvtTE ol Z
AV S A,z v
B RE ‘;\'(7\:0)‘ ) ('_' L)I Te'w cot @ cot 20 . . . cot p(lS p\dz;x
Je=0 b
on-1 A { g 1
: N y R - -
x Z'] (—) KE:)(—‘A_ - 5:77) i (Z) —/-%’,A(—X—) }_I ("‘ L)D ! cot O cot 20 . . . cot pa
= } Y (4.1

It should be noted that the product cot « cot 2« ... cot pa must be
replaced by unity for p = 0.

With the help of formula (4.1) we find the equation of the wave sur-
face

N e - % sin ot Re [ (z), z=x (4.2)

Special interest lies in the form of the surface at distances lar
from the origin of the coordinate system, i.e. from the point of inter-
section of the average level of the fluid with the bottom of the basin.
Therefore, let us give the variable z = x in formula (4.1) an infinitely
large positive value. For x = @ we have

lim ¢*?* \ @) edr = 0 (=1,2 .. 0n—1)
x=00 U
% 2n-1
. P R IS j 1 ! .
tim ¢y % ) () (= =) 6 =0
0 =0
lim g () =
X==00

Consequently, for large values of z = x we have

T T
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_ﬂek,xg —)\O(dgzn_( )J( 1
2" (o) 2 =)
0 j=0
Let us introduce the notation
g
i 1 B
4+ Bi= AO»)S [ ® =2 X (g — =) [ e 63
j=0
We then obtain

() = ({4 +acos/yn(n—1)] + i[B—asinY,n(n—1)]} x

X (cos vx — i sin vz)

from formula (4.2) we find

Hence,

n=—(c/28 [A+ acosV,n(n—1)] [sin (v + of) — sin (vz — at)]+
(0 /2g) [B — asinVm (n — 1)1 [cos (vz + of) — cos (vz — o)l  (4.4)

5. Through integration by parts formila (4.3) can be reduced to the
form

an—1
—a v (1p.1—"s‘ 12 %) 8 ()] 64
A< Bi 2nA,(w§ %) S — ) S )+ U+u)S ()] G
having introduced the designations

n—i

=3 (T 4 s, =§° o

ooei"tdg
& Ja—om s0=) 7=

0
Repeatedly using integration by parts, we find the formula

1
$a(0) = Gy (" (= D1+ ()P — 9!

rersm— e e p

iv +
2

“heris@) 62

The integrand function of formula (4.3) can be represented as

2n—1
) — 2( 2 =) (5.3)
% ]
n—1  2n—
_ 9 D\, —ilk+D) 1 1 T
2n k§0 bk %0 ( yx [(g__ cj)k+1 + (g . C]-')I“'IJ
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11 ; on--1
vy 1 1 ] 7 N j 1 1
O AT k| 9q & =) ?"Q'*C—‘*]
T k=1 b I/) 2 i=0 ST T

Having noted this result, we obtain after

formula
vt 1 1
\ T (=)« j(k—'l)[ 3 }ei’:d" _
- i - nk =
2 e
(= z_l (it (1Y =2y
k' ) ld /{ ! ' :’kAA> T ‘A-Mk !A—Aii T N
j=0 J
o k-2
iowenl 11 (=2 (k — B .
DI L w1 '(f&’3>+ R
J=0 J 3
2u—1 1 1 2n—1
. R RS125)) o . k-1 ik - 1) IR
> (=)= (T{ | A—)J RN G (2 Z( P )
j=0 j i J J
n--1
| (,‘_g_ S (D[S () + S ()]
B

By virtue of the value of k all the sums which enter into the right-
hand side of this formula with the exception of the last one vanish and

thus
O ap- 1 {
Z (- )"M ikl (ww*r?lrl}::f»'{ —TﬂﬂAh’“}{T} eivt dC .
o €= € =)
n—1
‘”) S (IS () 4 S () (5.4)
7220
The formula
O on—1 . on--1 5 5)
s 1 1 Loy (w)k RN (-0}
y! L — 3,k )
L (—)w { — % —;—*T,;]e”* d¢ - Z (=P K LS (r) — S (e)]
0 3= 0 @~ (‘i) G— Ci) 1)' j=n ! J
can be established as well.
At the same time we have
O oy " 1 2nv_;1
\ S (i ) N 2SS 6O
o iz > i i j=n

Using formulas (5.3), (5.4), (5.5) and (5.6), the equality
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2n—1 1

l Zn 2 (—y ( T )] eV dp =
—1 2n--1
A3

2 =P IEVLS () + 8 (e)] =
n—1 271-1

2m—~1
i\’q (iv)k'—l bk i ik , q . oy

k=1 j:() ij=0

3/78

can be written.

Let us transpose the order of the summations on the right-hand side.
We obtain

n—1

S[ (C)’-MZ( )(;_10 _—{;Ti‘c;fﬂe"":dg:
L]
gn—1 i
t%jzo (——1> (1 — ) S(c)kg()(x ) a, +
an—1 1
+2 3 (5 )(1+x’)s<c)2( >kak
=0 k=0

But the interior sums are equal to F]-. Hence we obtain formula (5.1).

6. Let us return to the results of Section 3. To the function f(z)
let us add a function which defines standing waves that depend on sin ot.

For these waves we have
w, (z, t) = f, (2) sin ot
where

f1 (2) = be i1 [ere? b | oot €M? 4 iFoot & cor 20 €M7

+...—+-l oot o cot 200 . .. cot (n—i)ue"'l]

The real number b has an arbitrary value. In accordance with this func-
tion the elevation of the fluid at large values of x is determined by
the formula

= (bo / 2g)[cos Y/t (n—1) cos (v + ot) —sin Y/, (n — 1) sin (vz+ ot)] +
+ (bo / 2g) [cos Y/, nt (n — 1) cos (vz — ot) — sinY/,n (n — 1) sin (vz— ot)}

Let us add the ordinates n, to the ordinates of the wave surface
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represented by formula (4.4). We obtain

b -
= [A—S C()Sl._ﬂ (n — 1) + ;t-l—si_p_—i—;n; (n — 1\——-c£ cos (vr — o) 4+
ng 4 1 / zg 4 A ’ zg‘ et Wl od vy ol
as 1 bs i A
+[—§c0szn(n—1) EEstn(n——i) }—%]sm (v —ot) 4
bs 1 as 1 B
+[Ecos—4—n(n—1) z—gsm—é—n(n——i)vi-ﬁ cos (vx -+ at) —
._I—a_sces_i_ﬂfn 1) _ﬁc;niw{n__l\_l“ Gi—nv\/nm_l ~f)
[_ g A o 17 7 2g Ll 4 PLaR {4 L] g_D“ Ve T ULy

Let us set the condition that the waves must vanish at infinity. Dy
virtue of this condition the coefficients of the last two trigonometric
functions must vanish. Hence, we obtain the values of the arbitrary co-
efficients a and b

n—1) nn—1)

a=-—Acos&"Z—Q—f—BsinﬁLn—/_—i—),b:—Asinf-(—/—-——-Bcos v
£ + 4

For these values of a and b the equation of the wave is written as

H = — (6B / g)cos(vx — at) for n=1 (mod%) (6.1)
H=—(0/gV2(A + B) cos(vt — ot +Y,n) forn=2 (mod4) (6.2)
H = (oA / g) sin (vz — 08) for n =3 (mod 4) {6.3)

H = (0 / gV—Q) (A —-- B) sin (vx — ot +- 1/4 ﬂ) for n = {mod 4) (64)

The quantities A and B are given by formula (5.1)

7. Let us use the formulas obtained to investigate a series of special
cases., Let us consider first waves which proceed from a source located
inside a right angle. In this case n = 1. Consequently, equation (6.1)
must be worked out which leads to the well-known result

n = — —251 e~ €0s VI, cos (v — ot) (7.1)

In fact, in the case under consideration we have

w=—1, a=1,1m A (=1, c =pe, ¢ = — pe ¥

The calculations show that

Fi=1, A+ Bi == {S (o) + S ()

I

We have
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q { 1 1
A — i ivg
T o(é—pe‘"+§+pe"“)e %
(o]
.9 1 1 :
A—Bi=— ; =) %
l n§(§—-98“”+§+96‘“)e %
Hence
2Bi=—q §°( ! — -} i ) ei“tdg
PN et T

Calculating this integral by means of residues, we obtain
B = 2ge™"% cos vz, (Pe*t = z4 ¢ iug) (7.2)

Turning now to formula (6.1), we obtain (7.1).
Let us now take n = 2. In this case we have a = 45°.
Carrying out the calculations, we find the following expression:

)

—__5_ (7.3}
gv2

A4+ B) = — %Z—q[e"“psmi*cos(%n ~+ vp cos p) +
-+ evPCos P cosg (% 1t -+ vpsin p.)]

for the amplitude of the wave of (6.2).

Let us indicate the values of the various quantities which are neces-
sary to work out formula (5.1) in the case under consideration

1 s
=5, NG =vVIW
Fo=1—i, F,=2, F=13%1i, Fy=20

® = — i, ay = 1, ay

Working out formula (5.1), we obtain

A+ B)e ™ V2/g=101— ) S(g)— (1P DS ()] —
— i+ DS () $—1)S(e)]

Along with this formula the following formula can also be written,

taking the conjugate quantities:

(4—Bi) i Y2/ g =11+ )8 (e) = (1 — DS ()] +
+ilt =08 @+ U+ 05 @)
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Let uys add these two formulas term by ternm and, using the integral
residues, determine the differences between such integrals as §{9§'} —
S{cg) Which enter into the right-hand side. After carrying this out we
obtain equality (7.3).

Let us now assume that n = 3; the angle o will be equal to 30°.

Carrying out the calculations, we find the following expression for
the amplitude of the waves of (6.73):

sA g = — (20q[g) {evPsinChmw gin |vpcos My m— p)] —

— b 3 oreEsinUmipd pos [vp cos (Mt - gY] - ¢8R sin {vp cos p)} {7.%)

Let us cite the values of the quantities which are needed to work
out formuls ¢5.1)

K- Yo (L— i VB ap=1t, e vV, g = v AT (A 2 v V3
For ~—i¥id, Fi=3—iV3 Fy=3+iV¥3 Fy-=iV3 F =0 F v

Let us work out formula (5.1)
(- Bas/qg - i V34 803 — [8{) -+ 8 {eg) — i) — & {e}]

Simultaneously with this formuls the ¢onjugate formula can he written

Byl g — i VIR ) + 8] = 15 (@) + 8 (e) — 8 () = & (o]
Adding these formulas and evaluating the integrals, we obtain formuls
{(7.4).
Finally, let us take n = 4. In this case the angle o will be equal
to 22°30". The calculations reduce to the following expression for the

amplitude of the waves of (6.4):

o{d =B IgV2={Boq/g)} (V2 -+ 1) eveoose gin (Yt — vp cos p) +
(V2 4 1) emvesinCamm gip [Ym - vp cos (Vg + p)] -
— ewesinegin (M, x - vpoosy) —
— s tAt-pgin [Y, 1 -+ vp cos (ym— W) (7.5
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Let us cite the values of the quantities which are needed to work
out formula (5.1); we have

x=1V20—1, ag=1, a=v (V24 1), ay=v2 (V2+1), ag = v3
A (ho) = — 1wl ™ Fo== —~ V2 i), F1=2—20(V2+41), Fa=4+2V32
Fe=232i(V2+1), Fi=—=V2Z(U—1i, Fi=0, F,=0, F,=0

Let us represent formula (5.1) and its conjugate in terms of these
quantities; adding these formulas term by term, we obtain

—n/2¢(A4—B) =+ )5 () —S (N4 (1—1i) IS (c) — S ()] +
+ U+ D)8 (eg) — STl + (1 — i) IS (e) — S (e)] +
+ A4+ VDU =D —SEN+UA+VIA+)IS () — S (e)] +
+FUA+VIUA+D [S@)—SEl+ A4+ V2)U+ HIS() —§ ()]

Computing the quantities within the square brackets with the help of
residues and carrying out the necessary transpositions, we obtain
formula (7.5).

8. Formulas (7.3), (7.4) and (7.5) permit the position of an oscillat-
ing source which will not transmit progressive periodic waves to in-
finity to be found. To determine such source positions it is necessary
to solve the equation obtained by setting expressions (7.3), (7.4) and
(7.5) equal to zero.

Let us consider the very simple case a = 45°; to solve the problem
the equation

evpsinkcos (1,0 -+ vp cos p) + ePeose cos (Y - vpsinp) = 0

must be investigated.

Let us set x = vp cos u and y = vp sin 4. This equation then reduces
to the form

€ cos (M, W bx)=—e€V cos My 4 y)

A curve showing x as a function of y can be drawn from a geometrical
construction of the left- and right-hand sides of this equation. This
curve consists of an infinite number of separate branches located be-
tween the x-axis and the bisector of the coordinate angle, since x > y
(Figure).
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Let us assume that the angle u is given; the ratio of x to y is then
known to be equal to cot u > 1. Let us intersect the constructed curves
x = x(y) with the straight line x = y
cot u; we then obtain an infinite
number of points of intersection. The

radius vector which connects the origin 7 0
of the coordinate system with some a
point of intersection will have a 3
length equal to vp. An infinite set of 4
such quantities vp having a limiting 5o
value of © will be found. Consequently, °
if along with the angle p the distance T
p of the source from the origin of the
coordinate system is given also, an g
infinite number of different frequencies

tending to infinity will be found which

do not generate periodic progressive

waves that are transmitted to infinity. If, however p and v are given,
then an infinite number of different values of p are found which to-
gether with p determine an infinite number of source positions with zero

amplitude transmitted waves.

It is also possible to regard curves of p as a function of p con-
structed on a plane within the angle — a < — u < 0 as the locus of the
positions of sources which do not transmit progressive waves to infinity.
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